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A probability-information method for describing the stressed state of a massif is developed. An analysis of 
the interrelationship of massif fracturing, the shape of the tool, and the stressed state of the massif in loading 

is made, and the dependence between the information characteristics of these distributions is found. 

A special feature of rocks that distinguishes them from artificial materials is the presence of numerous 

structural heterogeneities (blocks, fractures, grains, minerals) that have a significant effect on their destruction. 

Efforts to take account of these special features when describing the destruction process with current theoretical 

methods based on continuum mechanics and Griffith's theory lead to insurmountable computational difficulties. 

In the present work we develop a mathematical model of rock destruction on the basis of information theory 

and percolation theory that enables us to take into account the presence of structural heterogeneities in rock. 

Formation and growth of fractures in rocks occur through the emergence of connecting necks between 

microdefects in rock [1 ]. Thus, for a mathematical description of these processes flow theory is applicable [2 ]. 

Formation of a connecting neck between two microdefects is a random event, its randomness being due to both the 

heterogeneity of the properties of rock and the random component of the stress field. The stress field randomness 

is a consequence of numerous randomly oriented stress concentrators (structural heterogeneities of the massif) 

present in rock. Thus, the stressed state of the massif can be described by a probability density function of the 

stress intensity, and this function's parameters characterize the presence of structural heterogeneities in the massif. 

Below, the statistical entropy of this function (information of the stressed state) is chosen as a stressed state 

parameter. It is well known that there are systems of fractures in rock that form a block structure [1 ], and it exists 

at several levels (right down to grain sizes at the lower one). A growing fracture integrates existing fractures in 

rock simultaneously at many levels, i.e., goes along the block boundaries at different levels (scales). Thus, there 

is fractality of both the fracture and the stressed state that governs its trajectory, and the fractal dimensions of 

these objects depend on the massif structure and can also characterize this structure. 

We deal with the process of fracture formation in the loading of rocks. The stress at a point of a massif 

may be considered a random variable since it is governed by the stress concentration on structural heterogeneities 

in rock, the stress superposition on each of them, and their size and orientation [1 ]. An information description is 

proposed in [3 ] for the shape of a tool that is based on a representation of the contact stress profile as a probability 

density; it is shown that the statistical entropy of this probability density characterizes the shape of the tool and 

is functionally connected with the energy intensity of rock destruction by this tool. We deal with the probability 

density of the stress intensity distribution p(cr i) as a function of size distribution of the stress concentrators in rock 

and the tool's shape. The function p(a i) is related to the stress distribution over the massif by the formula 

V 
p (at)  = 

e 3 
V/e 

[ai ; a i (x , y ,  z) l ,  

where e is the linear size of a conventional small element of the massif (the distance between microdefects) [4 ]; 

cri(x, y, z) is the function that describes the stress distribution over the massif. 
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Let p(S) and p(Crco n) be the probability density of the areas of the cavity of existing stress concentrators 

and contact stresses on a loading site. Taking into account the direct proportionality between the contact stresses 

on the loading site and the stress intensity at massif points near a given point of the contact site [3 ] (this follows 

from smooth change in the contact stresses on the contact site and a solution to the Boussinesq problem) as well 
as the laws of stress distribution near a plane concentrator, we can write 

a t COco aS  1/4. (1) 

The distribution function p(a i) is expressed in terms of p(crcon) and p(S) using the operation of convolution. We 

determine p(S) and p(acon). In the course of surface deformation of rock at a constant load there is a redistribution 
of contact stresses (on account of surface crushing of the rock) that minimizes the stress entropy [5 ]. By writing 

the corresponding Lagrangian and minimizing it we obtain 

p (acon) =;tco" exp ( -  Jlco . %on)" (2) 

Formation of an infinite cluster in a given volume (which corresponds to formation of a fracture with a 

cavity area, equal to the area of this volume's diametral cross section S) occurs when the density of destroyed small 

elements (connecting necks between microdefects) attains the critical value X c. This value is of the order of 0.2-0.4. 

Thus, the probability of formation of a fracture with the cavity area S is determined as the probability of a given 

number of outcomes in sample with replacement: 

m rra (1 r) n - m  (3) 
p ( s )  = c n - , 

n = 0.095S2/3e -3, m = Xcn. At large n and small r the binomial distribution (3) reduces to the Poisson one: 

p (S) = It' (m" nr) = (nr)m �9 ' m!  e x p ( - n r ) .  (4) 

The value of e is determined, as shown in [4 ], in terms of physical characteristics of the rock, and the value of r 

is determined below. 

The coefficient C is a random variable and by applying to it the procedure of minimization of information 

[5] we find a distribution function C similar to (2). We next take the logarithm of the function (1) and find the 

distribution function of the stress intensity logarithm as a convolution of the distributions (2) and (4) (with account 

for the formula of the relationship between the distribution function of a random variable and the distribution of 
its logarithm). 

By representing (2) as a Poisson distribution and taking into account the stability of this distribution, after 

the corresponding rearrangements (which includes use of a convolution integral twice) we obtain 

where 

P (ai) = P.o.P (%o.) P (s) p ( c ) ,  

 Cav( " c)m+I 
Pnon=0.36__~_/ 2 c o n a c o n + n r + ~ a  v n ~  ~ i ( 1 -  i)n. 

"'COn i=0 

(5) 

Here Pnon is a multiplier that takes account of nonlinear terms. The function (5) describes the stressed state 

occurring in a fractured massif in its loading with a tool of a prescribed shape. The coefficient 2con characterizes 

the tool shape and the loading energy, and the function (3) describes massif fracturing. The function (3) is derived 

from the conditions of the previous loading (with respect to that in question), which is characterized by the prob- 

ability r. 

We determine this probability. Let there be a loading of a massif whose conditions are also characterized 

by the functions (2) and (4) but with different coefficients ;tcon and r. Then the stressed state is characterized by 

the function po(cri). Having specified the critical value of the stress intensity acr we obtain 
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r = ~ PO (cri) dcri" (6) 
%r 

Thus, there is a feedback that governs the formation of the fracture system with several loadings. 

We next deal with the structure of the system of fractures itself and the stressed state that governs it. A 

fracture destroying the massif integrates existing fractures, and its trajectory between fractures of a given size is 

composed in turn of fractures of considerably smaller size, connecting necks between them, etc. Thus, fracture in 

rock is a fractal, and the same also refers to the stressed state governed by the size of a given fracture. Taking into 

account the formal definition of fractal dimension, we have 

D = In [p ($1)/p ($2)]/ln ($2/S1) , (7) 

where D is the fractal dimension of the macrofracture; $1 is a mathematical expectation of the fracture cavity area 

in the entire deformed volume; $2 is the same in the volume with the diametral cross section S1. If one calculates 

the fractal dimension in terms of other critical indices, then as a first approximation D ---- 2.53 [2 ]. The same fractal 

dimension obviously also characterizes the massif stressed state itself. 

Expressions (2)-(7) imply a linear relationship between the information characteristics of the shape of the 

tool, the stressed state, and the fracturing of the massif. Using the Shannon formula to determine the information 

of the stressed state described by (5) with allowance made for the property of information additivity, we obtain 

Hss= Hco n + H  c + H s + A l l ,  (8) 

where Hss is the stressed-state information, Hss = y P(Cri) In p(cri); Hco n is the information of the contact stress 
qi 

distribution on the loading site; Hs is the information of the size distribution of the stress concentrators in the 

massif; H c is the information of the stress concentrator distribution over the massif (distances to the point of loading 

and orientations); AH = Z Pnon In Pnon. Thus, in massif deformation conversion of information occurs: the 
O'" 

information of the shape of tl~e tool and the structural heterogeneity distribution in the massif converts to stressed- 

state information. Further conversion is associated with conversion of the stressed-state information to that of the 

distribution of the formed fractures. It is evident that r is related to Hss (the less the information of the distribution 

p(cri), the larger the value of r). This relation depends on the form of the distribution p(cri), and for the simplest 

case, namely, an exponent, it has the form 

r = exp [ -  Crcr exp (1 + Hss ) ] ,  (9) 

where aia v is the average value of the stress intensity in the massif. 

The information of distribution (3) depends on r by the following formula obtained with account for the 

Shannon formula: 

H s = n a v  [ r - X  c l n ( n a v r ) ] + l n ( X  cnav ) ! ,  (10) 

where nay = 0.095S13'2e -3. 

Thus, formulas (9) and (10) prescribe a reverse conversion of information: the stressed-state information 

converts to that of the fracture size distribution. 

The information model developed above for the process of rock destruction can find wide practical 

application since it permits a much simpler formulation of many problems and hence simpler solution of them. For 

example, formulas (8) and (9) prescribe the relationship between the information of the contact stress distribution 

on the loading site and the massif destruction intensity. It follows that fragile rocks are destroyed most efficiently 

by spherical penetrators (a large contact site is ensured with little information of the contact stress distribution), 

plastic rocks by conical penetrators, and esily deformed rocks by cylindrical penetrators. This is confirmed by 

experiments of [6 ]. 
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We compare simultaneous and successive loading of rock by two equal loads. In the first case the integrand 
in formula (6) is a convolution of two distributions (5) and in the second case it is their product. For the simplest 

case (the function (5) is an exponent) we obtain 

r l / r  2 = 1 + 0.5(1 - r2) [1 - In ( r2 /2) ] ,  

where r I and r 2 correspond, respectively, to the simultaneous and successive loading. By rough estimates [3 ] 

r l / r 2  ~ 2.1. Taking into account that r is proportional to the newly formed fracture area, we infer that with loading 
simultaneity the distance between the penetrators at which chipping off occurs can be increased by a factor of 1.4. 

It is shown experimentally in [7 ] that this ratio (the width of the separated pillar in simultaneous and successive 

loading) is 1.33, i.e., 7% smaller. Thus, loading simultaneity (i.e., arrangement of bits in a group or in pairs) 

ensures an increase in rock destruction efficiency. 

Fracture fractality affects the area of the newly formed surface in a massif, i.e., the energy intensity of 

destruction. By taking r = Xc and taking account of the defect density as a function of the scale [2 ] we obtain 

1 Crcr Hss 
W ' = - -  

d - D  l n X  c ' 

where d = 3 is the dimension of the  space. 

Thus, a mathematical model of rock destruction based on methods of information theory and percolation 

theory is developed. A probability method for describing the stressed state of a massif is proposed. The massif 

stressed state as a function of rock fracturing and the shape of the tool is analyzed in a general form. It is shown 

that the process of rock destruction is a process of conversion of information. 

The fractal dimension of the stressed state and the fractures formed is determined and its effect on the 

energy intensity of the destruction process is analyzed. A practical application of the model developed is shown; in 

particular, the appropriateness of arranging bits on bores in a group or in pairs is substantiated. 

N O T A T I O N  

ai, stress intensity at a point; p(a/), probability of a given value of the stress intensity; acon, contact stress; 

6, Kronecker symbol; V, deformed volume; e, distance between microdefects; S, fracture cavity area; p(O'con), 
probability of a given value of the contact stresses; C, coefficient that takes into account the orientation of a fracture 

and its position relative to the loading site; 2con, reciprocal of the average contact stress; Cn m, binomial coefficient; 

Xc, critical density of destroyed elements; n, number of volumes of diameter e in a rock volume with the diametral 
cross section S; ~p, Poisson distribution; r, probability of formation of a connecting neck between two microdefects; 

acr, ultimate strength of the rock; Car, average value of C; D, fractal dimension; H, entropy; W, energy intensity 
of rock destruction. 

R E F E R E N C E S  

. 

2. 

3. 

. 

. 

6. 

7. 

M. V. Rats and S. N. Chernyshev, Fracturing and Properties of Fractured Rocks [in Russian ], Moscow (I970). 

I. M. Sokolov, Usp. Fiz. Nauk, 150, No. 2, 221-253 (1986). 

L. L. Mishnaevskii (Jr.), in: Rock Destruction in Hole Drilling: Abstracts of Papers [in Russian ], Vol. 1, Ufa 
(1990), pp. 72-73. 

L. L. Mishnaevskii (Jr.), "Improving the design of cutting drill bits on the basis of modeling of the drilling 

process," Candidate's Dissertation, Yakutsk (1990). 

A. J. Wilson, Entropy Methods of Modeling of Complex Systems [Russian translation ], Moscow (1978). 

B. A. Zhlobinskii, Dynamic Destruction of Rocks in Impression [in Russian ], Moscow (1970). 

R. M. Eigeles, R. V. Strekalova, and N. N. Mustafina, in: Rock Destruction (ed. R. M. Eigeles) [in Russian ], 
Moscow (1975), pp. 136-150. 

748 


